Hypoxemia

Henry Del Rosario MD

• <u>Definitions</u>

- o **Hypoxemia**
 - Definition
 - Low partial pressure of oxygen (PaO2) in the blood (low level of oxygen in the blood)
 - It does not always cause tissue hypoxia
 - Causes
 - Hypoventilation
 - V/Q mismatch
 - Primarily dead space defect **(often called V/Q mismatch)**
 - o Primarily shunt defect
 - Diffusion limitation
 - Reduced inspired O2 tension
- o **Hypoxia**
 - Definition
 - Insufficient oxygen to meet a tissue's metabolic demand (low level of oxygen in a tissue or organ)
 - Hypoxemia can lead to tissue hypoxia, but not always
- Oxygenation
 - Definition
 - Process of oxygen diffusing from alveolus to pulmonary capillary to bind to hemoglobin or dissolve in plasma

Causes of hypoxemia (initial workup)

	A-a PO2 gradient	PvO2
Hypoventilation	Normal	Normal
V/Q mismatch	Inc	Normal
DO2/VO2 imbalance	Inc	Dec

Definitions and equations

- A-a oxygen gradient = PAO2 PaO2
 - \circ PAO2 = (FiO2 x [Patm PH2O]) (PaCO2 ÷ R)
 - Alveolar oxygen amount
 - FiO2 = usually 0.21 at RA
 - Patm = 760 mmHg at sea level
 - PH20 = partial pressure of water = 47 mmHg (at 37°C)
 - PaCO2 = arterial carbon dioxide tension = (normally 40 mmHg)
 - R = respiratory quotient = usually 0.8 (but varies to use of carb, protein, fat)
 - (remember to compare it to A-a gradient appropriate for age = age/4+4)
 - PaO2
 - **a**rterial oxygen amount
 - (measure with an ABG)
 - o High A-a gradient
 - Oxygen transfer/gas exchange problems
 - V/Q mismatch, alveolar membrane diseases or ILD
 - o Normal A-a gradient
 - With hypoxemia implies hypoventilation (displacement of O2 with CO2 or other gas)
- **PvO2** = $k^*(DO2/VO2)$
 - mixed venous PO2
 - o (measured using indwelling pulmonary artery catheter; if none, can measure the PO2 in the SVC)
 - A dec in PvO2 implies a DO2/VO2 imbalance
 - o **DO2**
 - systemic O2 delivery
 - (low CO, anemia, etc = dec DO2)
 - VO2
 - rate of O2 uptake
 - (hypermetabolic state = inc VO2)

Hypoventilation

- Mechanism
 - Lung alveolus is a space of 100% gas → if the partial pressure of one gas increase the partial pressure of another gas must decrease
 - In hypoventilation there is decrease air movement → alveolar increase of carbon dioxide (PACO2) → oxygen (PAO2) in alveoli must decrease
 - A-a gradient is normal
- Causes
 - CNS depression (drug overdose, opiates, CNS lesions)
 - Obesity hypoventilation (Pickwickian) syndrome
 - Impaired neural conduction (ALS, GB)
 - Muscular weakness (myasthenia gravis, hypothyroidism, critical illness myopathy)
 - Poor chest wall mechanics (kyphoscoliosis)
- \circ Tx
- Responds to supplemental oxygen

V/Q mismatch

- Definition
 - Imbalance of ventilation and perfusion
 - A-a gradient is almost always elevated
- Causes (two opposing forms; per Marino and UpToDate: Mechanical ventilation article)
 - Primarily dead space defect
 - COPD, asthma, PE
 - Primarily shunt defect
 - PNA, pulm edema, ARDS
- Normal lung
 - A normal lung has V/Q mismatch: V/Q ratio is higher in the apices and lower at the bases (higher ventilation in the apices, more perfusion in the bases)

Dead space

- Definition
 - Ventilation is excessive to perfusion (V/Q >1)
 - Ventilated lung but no blood flow → no gas exchange
 - ***(when the pathology has mostly dead space defects = people call this a V/Q mismatch)***
 - Memory cue: When I see DEAD, I think NO BLOOD = DEAD LUNG. There is SPACE, because alveoli are ventilated and open.
- Anatomic dead space
 - Large conducting airways have no contact with capillary blood
 - Pharynx, trachea
 - Using a snorkel :)
- Physiologic dead space
 - Poor perfusion
 - PE
 - Reduced blood flow (low CO)
 - COPD (emphysema destroys alveolar septae and pulm capillary bed → limited blood flow to a fairly well oxygenated lung)
 - Positive pressure ventilation (can inc ventilation to alveoli that do not have corresponding inc in perfusion → worsens dead space)

Henry Del Rosario MD

- Tx
- Responds to supplemental oxygen

Intrapulmonary shunt

- Definition
 - Ventilation is inadequate to perfusion (V/Q <1)
 - When blood passes from the right to the left side of the heart without being oxygenated
- Anatomic shunts
 - When blood bypasses alveoli
 - Can cause extreme V/Q mismatch (V/Q=0)
 - Intracardiac shunts (ASD, VSD, AVMs)
- Physiologic shunts
 - When non-ventilated alveoli are perfused
 - Atelectasis
 - Disease with alveolar filling (PNA, pulm edema, ARDS)
 - Obesity
- Tx
- DOES NOT respond to supplemental oxygen
 - Blood is not in contact with an alveolar membrane that can exchange oxygen → so breathing 100% will not correct hypoxemia
- ICU
 - Particularly in the ICU: for ARDS, a shunt is created where lungs are perfused but ventilation is limited due to alveoli filling → thus, increasing FiO2 has limited benefit → thus, you can decrease FiO2 without causing more hypoxia
 - Positive pressure ventilation, esp with PEEP, can tx dead space caused by atelectasis, by opening more alveoli

<u>Diffusion limitation</u>

- Definition
 - Impaired movement of oxygen from the alveolus to the pulmonary capillary due to problem with diffusion through the alveolar membrane
 - Exercise induced-hypoxemia
 - A-a gradient is elevated
- Mechanism
 - During rest, oxygen diffuses slowly, allowing even impaired diffusion to oxygenate sufficiently
 - During exercise, there is less time for oxygenation → oxygenation is impaired
- Causes
 - **ILD**, pulmonary fibrosis
- o Tx
- Responds to supplemental oxygen

Reduced inspired O2 tension

- Definition
 - Decreased FiO2 or atmospheric pressure will decrease PiO2
 - PiO2 = FiO2 x (Patm PH2O)
 - A-a gradient is normal
- Mechanism
 - Body naturally hyperventilates → PaO2 inc but PCO2 dec
- Causes
 - High altitude

Hypoxemia Henry Del Rosario MD

Sources:

- Good (stating V/Q mismatch consists of two opposing forms: dead space and shunt)
 - Marino's ICU Book
 - http://www.uptodate.com/contents/physiologic-and-pathophysiologic-consequences-of-mechanical-ve
 ntilation
 - o https://www.openanesthesia.org/pulmonary physiology and respiratory failure/
- Okay (really good explanations, but doesn't show how dead space and shunts are part of V/Q mismatch)
 - https://www.youtube.com/watch?v=RJ-H8 0-8wk
 - https://www.youtube.com/watch?v=pRlkwjlFRgo
- Hella confusing, read with caution
 - https://www.uptodate.com/contents/oxygenation-and-mechanisms-of-hypoxemia