• Definitions
 ○ Hypoxemia
 ■ Definition
 ● Low partial pressure of oxygen (PaO2) in the blood (low level of oxygen in the blood)
 ● It does not always cause tissue hypoxia
 ■ Causes
 ● Hypoventilation
 ● V/Q mismatch
 ○ Primarily dead space defect **(often called V/Q mismatch)**
 ○ Primarily shunt defect
 ● Diffusion limitation
 ● Reduced inspired O2 tension
 ○ Hypoxia
 ■ Definition
 ● Insufficient oxygen to meet a tissue’s metabolic demand (low level of oxygen in a tissue or organ)
 ● Hypoxemia can lead to tissue hypoxia, but not always
 ○ Oxygenation
 ■ Definition
 ● Process of oxygen diffusing from alveolus to pulmonary capillary to bind to hemoglobin or dissolve in plasma
Hypoxemia
Henry Del Rosario MD

Causes of hypoxemia (initial workup)

<table>
<thead>
<tr>
<th></th>
<th>A-a PO2 gradient</th>
<th>PvO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypoventilation</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>V/Q mismatch</td>
<td>Inc</td>
<td>Normal</td>
</tr>
<tr>
<td>DO2/VO2 imbalance</td>
<td>Inc</td>
<td>Dec</td>
</tr>
</tbody>
</table>

Definitions and equations

- **A-a oxygen gradient** = PAO2 - PaO2
 - **PAO2** = (FiO2 x [Patm - PH2O]) - (PaCO2 + R)
 - Alveolar oxygen amount
 - FiO2 = usually 0.21 at RA
 - Patm = 760 mmHg at sea level
 - PH2O = partial pressure of water = 47 mmHg (at 37ºC)
 - PaCO2 = arterial carbon dioxide tension = (normally 40 mmHg)
 - R = respiratory quotient = usually 0.8 (but varies to use of carb, protein, fat)
 - (remember to compare it to A-a gradient appropriate for age = age/4+4)
 - **PaO2**
 - arterial oxygen amount
 - (measure with an ABG)
 - **High A-a gradient**
 - Oxygen transfer/gas exchange problems
 - V/Q mismatch, alveolar membrane diseases or ILD
 - **Normal A-a gradient**
 - With hypoxemia implies hypoventilation (displacement of O2 with CO2 or other gas)

- **PvO2** = k*(DO2/VO2)
 - mixed venous PO2
 - (measured using indwelling pulmonary artery catheter; if none, can measure the PO2 in the SVC)
 - A dec in PvO2 implies a DO2/VO2 imbalance
 - **DO2**
 - systemic O2 delivery
 - (low CO, anemia, etc = dec DO2)
 - **VO2**
 - rate of O2 uptake
 - (hypermetabolic state = inc VO2)
Hypoxemia
Henry Del Rosario MD

- **Hypoventilation**
 - **Mechanism**
 - Lung alveolus is a space of 100% gas → if the partial pressure of one gas increase the partial pressure of another gas must decrease
 - In hypoventilation there is decrease air movement → alveolar increase of carbon dioxide (PACO2) → oxygen (PAO2) in alveoli must decrease
 - A-a gradient is normal
 - **Causes**
 - CNS depression (drug overdose, opiates, CNS lesions)
 - Obesity hypoventilation (Pickwickian) syndrome
 - Impaired neural conduction (ALS, GB)
 - Muscular weakness (myasthenia gravis, hypothyroidism, critical illness myopathy)
 - Poor chest wall mechanics (kyphoscoliosis)
 - **Tx**
 - Responds to supplemental oxygen

- **V/Q mismatch**
 - **Definition**
 - Imbalance of ventilation and perfusion
 - A-a gradient is almost always elevated
 - **Causes** (two opposing forms; per Marino and UpToDate: Mechanical ventilation article)
 - **Primarily dead space defect**
 - COPD, asthma, PE
 - **Primarily shunt defect**
 - PNA, pulm edema, ARDS
 - **Normal lung**
 - A normal lung has V/Q mismatch: V/Q ratio is higher in the apices and lower at the bases
 (higher ventilation in the apices, more perfusion in the bases)
 - **Dead space**
 - **Definition**
 - Ventilation is excessive to perfusion (V/Q >1)
 - Ventilated lung but no blood flow → no gas exchange
 - ***when the pathology has mostly dead space defects = people call this a V/Q mismatch***
 - **Memory cue:** When I see DEAD, I think NO BLOOD = DEAD LUNG. There is SPACE, because alveoli are ventilated and open.
 - **Anatomic dead space**
 - Large conducting airways have no contact with capillary blood
 - Pharynx, trachea
 - Using a snorkel :)
 - **Physiologic dead space**
 - Poor perfusion
 - PE
 - Reduced blood flow (low CO)
 - COPD (emphysema destroys alveolar septae and pulm capillary bed → limited blood flow to a fairly well oxygenated lung)
 - Positive pressure ventilation (can inc ventilation to alveoli that do not have corresponding inc in perfusion → worsens dead space)
Hypoxemia
Henry Del Rosario MD

- **Tx**
 - **Responds to supplemental oxygen**
 - **Intrapulmonary shunt**
 - **Definition**
 - Ventilation is inadequate to perfusion (V/Q <1)
 - When blood passes from the right to the left side of the heart without being oxygenated
 - **Anatomic shunts**
 - When blood bypasses alveoli
 - Can cause extreme V/Q mismatch (V/Q=0)
 - **Intracardiac shunts** (ASD, VSD, AVMs)
 - **Physiologic shunts**
 - When non-ventilated alveoli are perfused
 - Atelectasis
 - Disease with alveolar filling (PNA, pulm edema, ARDS)
 - Obesity
 - ** DOES NOT respond to supplemental oxygen**
 - Blood is not in contact with an alveolar membrane that can exchange oxygen → so breathing 100% will not correct hypoxemia
 - **ICU**
 - Particularly in the ICU: for ARDS, a shunt is created where lungs are perfused but ventilation is limited due to alveoli filling → thus, increasing FiO2 has limited benefit → thus, you can decrease FiO2 without causing more hypoxia
 - Positive pressure ventilation, esp with PEEP, can tx dead space caused by atelectasis, by opening more alveoli

- **Diffusion limitation**
 - **Definition**
 - Impaired movement of oxygen from the alveolus to the pulmonary capillary due to problem with diffusion through the alveolar membrane
 - Exercise induced-hypoxemia
 - A-a gradient is elevated
 - **Mechanism**
 - During rest, oxygen diffuses slowly, allowing even impaired diffusion to oxygenate sufficiently
 - During exercise, there is less time for oxygenation → oxygenation is impaired
 - **Causes**
 - **ILD, pulmonary fibrosis**
 - **Tx**
 - Responds to supplemental oxygen

- **Reduced inspired O2 tension**
 - **Definition**
 - Decreased FiO2 or atmospheric pressure will decrease PiO2
 - PiO2 = FiO2 x (Patm - PH2O)
 - A-a gradient is normal
 - **Mechanism**
 - Body naturally hyperventilates → PaO2 inc but PCO2 dec
 - **Causes**
 - **High altitude**
Hypoxemia
Henry Del Rosario MD

Ventilation to Perfusion Mismatch

Pure Shunt
Perfusion with No Ventilation
Shunt Like Units
Pure Dead Space
Ventilation with No Perfusion

shunt
Dead space

Hypoxemic Respiratory Failure

V/Q mismatch

Atelectasis
Intraalveolar filling
Pneumonia
Pulmonary edema

ARDS
Interstitial lung dz
Pulmonary contusion

SHUNT
V/Q = 0
Intracardiac shunt
Vascular shunt in lungs

DEAD SPACE
V/Q = ∞
Pulmonary embolus
Pulmonary vascular dz
Airway dz
(COPD, asthma)

Physiological Shunting

Physiological Deadspace
Sources:

- **Good** (stating V/Q mismatch consists of two opposing forms: dead space and shunt)
 - Marino’s ICU Book
 - https://www.openanesthesia.org/pulmonary_physiology_and_respiratory_failure/

- **Okay** (really good explanations, but doesn’t show how dead space and shunts are part of V/Q mismatch)
 - https://www.youtube.com/watch?v=RJ-H8_0-8wk
 - https://www.youtube.com/watch?v=pRlkwlFRgo

- **Hella confusing, read with caution**