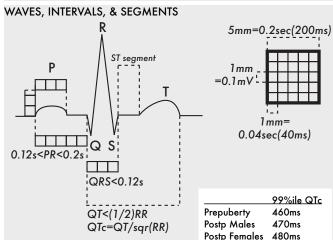


Count number of complexes x 6 (standard ECG = 10sec)


RHYTHM

- Locate the P wave (rate, axis, morphology)
- What is the relationship between the P wave and QRS?
- Analyze QRS morphology

AXIS DEVIATION	Lead I QRS	Lead II/aVF QRS
Normal (-30 to 90°)	+	+
Left	+	-
Right	-	+

HYPERTROPHY

- LEFT ATRIAL ENLARGEMENT (P mitrale)
 - P wave > 0.12sec and bifid in lead II
- RIGHT ATRIAL ENLARGEMENT (P pulmonale)
 - P wave > 0.25mV in lead II
- LVH
 - R wave in V5 or V6 > 25mm
 - S wave in V1 or V2 > 25mm
 - Sum of R wave in V5 or V6 + S wave in V1 >35mm
- RVH
 - R wave > S wave in V1

+120° aVF +60 **RAE** II **RVH** LVH

–90°

RAD

LAD

norma

aVR

-150°

±180°

NORMAL Q WAVES

- Small (septal) q waves normal in leads aVL, I, II, V5, V6
- Can be normal on expiration in lead III

PATHOLOGICAL Q WAVES (PRIOR MI)

- >1-2 small squares deep (or >25% of R wave)
- >1 small square wide (or ≥30ms)
- · More likely diagnostic if with inverted T wave

\exists

V٦

DOMINANT R WAVE

- In lead V1: normal in young children; seen in RVH, RBB, HCM, posterior MI
- In lead aVR: TCA poisoning, dextrocardia, VT

POOR R WAVE PROGRESSION

Prior anteroseptal MI, cardiomyopathy, LVH, RVH/COPD, LBBB

SHARP J POINT

- ST seg. & T wave well demarcated, not merged as in STE
- J point elevation is normal in young, healthy athletes

DIFFUSE J POINT

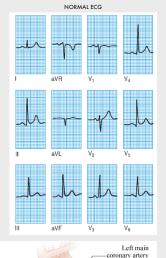
• ST slowly curving with only an area J point can be found

ST SEGMENT ELEVATION

- (New STE at the J point)
- In all leads (except V2-V3), significant STE =
 - In two contiguous leads
- ≥0.1mV
- In leads V2-V3, significant STE =
 - ≥0.15mV in women
 - ≥0.2mV in men ≥40yo
 - ≥0.25mV in men ≤40yo

ST SEGMENT DEPRESSION

- · (New horizontal or down-sloping STD)
- Significant STD =
 - In two contiguous leads
 - ≥0.05mV
- and/or
 - . T-wave inversion ≥0.1mV in two contiguous leads with
 - Prominent R wave or R/S ratio>1

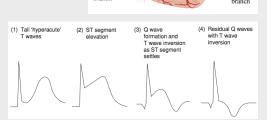

(Known LBBB and pacing make ECG less diagnostic for ACS)

PATTERNS

- Anterior MI (LAD) = V1-V4
- Lateral MI (LCx) = I, aVL, V5-V6
- Anterolateral MI (LAD) = I, aVL, V1-V6
- Inferior MI (RCA, LCx) = II, III, aVF
- Inferolateral MI (RCA, LCx) = I, aVL, V5-V6, II, III, aVF
- Acute posterior MI (RCA or LCx):
 - Dominant R waves in leads V1-V3
 - ST depression in V1-V3
 - Upright, tall T waves

STEMI EVOLUTION

- · Hyperacute T waves (tall, peaked,
- STE in contiguous leads (concave → convex, merging with T wave)
- · Development of Q wave and T wave inversions as ST returns to baseline



circumflex

Left anterior

descending

branch

Right

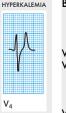
Right

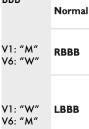
margina

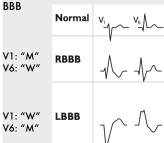
NORMAL INVERTED T WAVES

- Normal in leads aVR, V1
- Can be normal in lead V2 in young pts, lead V3 in black pts, lead III during expiration

INVERTED T WAVES IN ISCHEMIA


≥0.1mV in two contiguous leads


Φ **TALL T WAVES**


• <1/2 preceding QRS

LVH → LV STRAIN PATTERN → TWI in leads I, aVL, V5-6

RVH → RV STRAIN PATTERN → TWI in leads II, III, aVF

SOURCES: ECG tutorials on UpToDate (Basic principles of ECG analysis, Myocardial ischemia and infarction), Making Sense of the ECG by Houghton, Pocket Medicine by Sabatine; Third Universal Definition of Myocardial Infarction by Thygesen et al; lifeinthefastlane.com; compiled by Henry Del Rosario MD; last update 5/2018